

EXTREME COMPUTING GROUP

Defining the future.

Building Cloud Applications to Support Research: the Microsoft Azure Research Engagement Project

Cloud Computing Research Engagement Initiative

- Alexander Voss, Christian Geuer-Pollmann, Dennis Gannon, Fabrizio Gagliardi, Goetz Brasche, Jared Jackson, Nelson Araujo, Roger Barga, Wei Lu
- International Engagements.
 - Offer cloud services to academic and research communities worldwide
 - back up this offering with a technical engagements team.

• Data.

• Provide select reference data sets on Azure to enable communities of researchers.

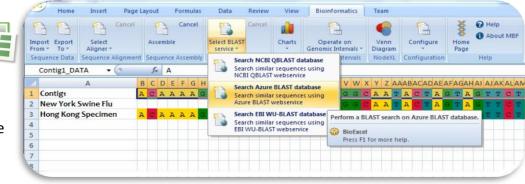
• Services for Research.

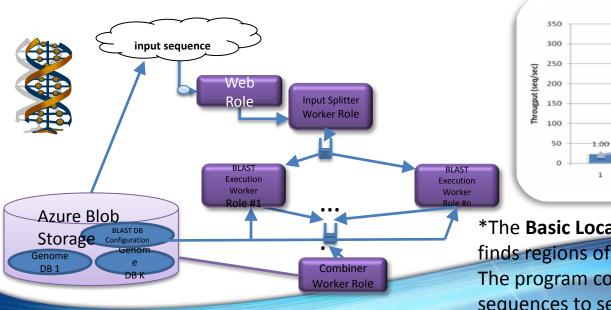
• Provide applications and core services for research.

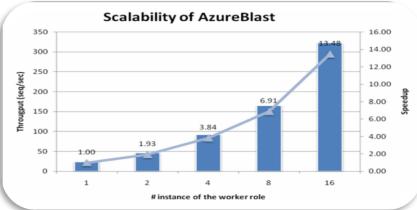
• Ask the questions, what does it take to catalyze a community of researchers, what are the core services, key products needed to support research.

Microsoft's Goals for this Project

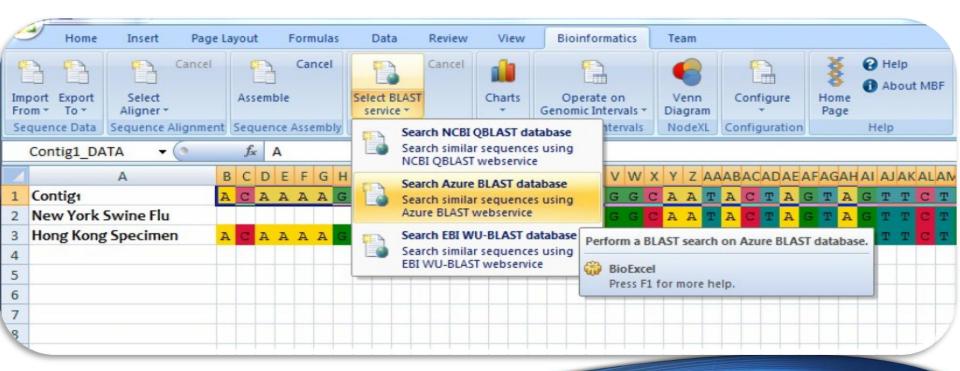
- Demonstrate that a client+cloud model can revolutionize research and learning
- Illustrate that cloud computing is a cost-effective and easyto-use way to outsource select components of research infrastructure
- Provide feedback from research community to our product groups
- Establish the Microsoft Cloud Computing platform as leader and trendsetter for basic research


Some examples based on our ongoing Cloud Research Engagements

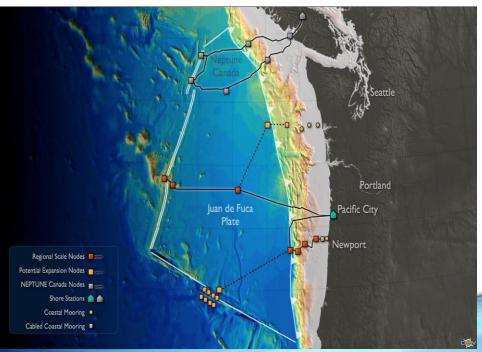

AzureBLAST*


Seamless Experience

- Evaluate data and invoke computational models from Excel.
- Computationally heavy analysis done close to large database of curated data.
- Scalable for large, surge computationally heavy analysis.
- Test local, run on the cloud.

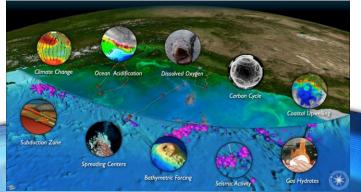


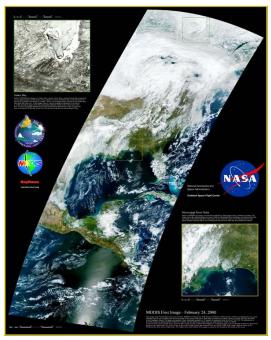
*The **Basic Local Alignment Search Tool (BLAST**) finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases


Making Excel the user interface to the cloud

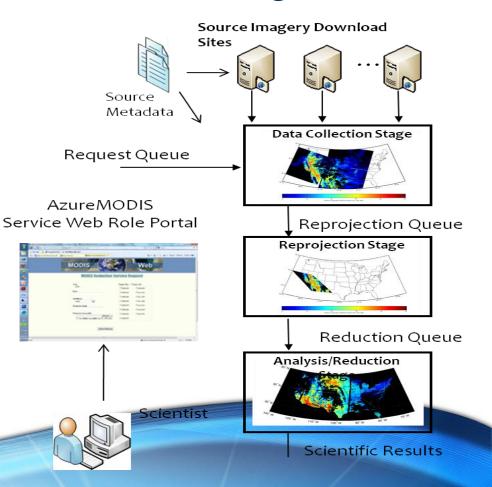
Supporting Smart Sensors and Data Fusion

The NSF Ocean Observing Initiative


- Hundreds of cabled sensors and robots exploring the sea floor
- Data to be collected, curated, mined
- OOI Architecture plan of record, store this data in the cloud


Data collected from:

• Ocean floor sensors, AUV tracks, ship-side cruises, computational models


Data moves from **ocean** to shore side **data center** to the **Azure cloud** to your **computer**.

AzureMODIS – Azure Service for Remote Sensing Geoscience

- 5 TB (~600K files) upload of 9 different imagery products from 15 different locations (~6 days of download)
- 4 TB reprojected harmonized imagery ~35000 cpu hours
- 50 GB reduced science variable results ~18000 cpu hours (~14 hour download)
- 50 GB additional reduced science analysis results ~18000 cpu hours (~14 hour download)

Potential Cloud Applications

- The cloud as a host to data collections
 - Classical http data Web n-grams, photos, blogs, etc.
 - Geographic & Semi-static Maps, satellite, geological records, weather radar, field reports/observations, geo-sensors (seismic, ocean)
 - Geo-tagged Social record census, public government records, local newspapers, health and police records
 - Scientific genome, pathology data, fMRI, astronomy, chemical
 - Dynamic shared state multiplayer games, virtual worlds, social networks
 - My context my devices, my application sessions, my agents

Geographic & semi-static data

- Maps, satellite, geological records, weather radar, field reports/observations, geo-sensors.
 - Mobile apps for emergency response.
 - Tell me when me or my team/family is in danger.
 - Integrate emergency data streams & field report tweets in the cloud and push to my client devices.

Geo-tagged social record

- Census, public government records, local newspapers, health and police records
 - Build cloud tools to understand societies problems
 - » Links between history of disease, poverty and pollution
 - » Correlate crime rates and bad weather
 - Discover the lost heritage of a people or a place

Dynamic shared state

- multiplayer games, virtual worlds, social networks
 - New modalities of collaboration

Reaching Out: Azure Research Engagement project

In the U.S.

Memorandum of Understanding with the National Science Foundation

- Provide a substantial Azure resource as a donation to NSF
- NSF will provide funding to researchers to use this resource

In Europe

- We interested in direct engagement with the thought leaders in the U.K., France and Germany
- EC engagements where possible

In both we provide our engagement team

 We provide workshops, tutorials, best practices and shared services, learn from this community, shape policy...

In Asia

- We wish to explore possibilities.

Virtual multidisciplinary EnviroNments USing Cloud infrastructures

Virtual multidisciplinary EnviroNments USing Cloud infrastructures

Funding Scheme: Combination of Collaborative Project and Coordination and Support Action: Integrated Infrastructure Initiative (13)

Program Topic: INFRA-2010-2 1.2.1. Distributed Computing Infrastructures

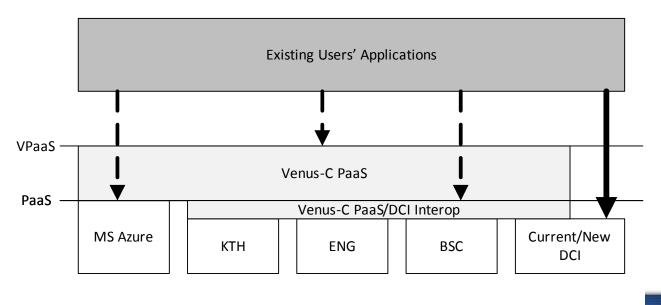
Goals

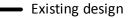
- 1. Create a platform that enables user applications to leverage cloud computing principles and benefits.
- 2. Leverage the state of the art to on-board early adopters quickly, incrementally enable interop with existing DCI and push the state of the art where needed to satisfy on-boarding and interop
- 3. Create a sustainable infrastructure that enables the cloud computing paradigms for the user communities inside the project, the one from the call for applications, as well as others.

Supporting multiple basic research disciplines

Biomedicine: Integrating widely used tools for Bioinformatics (UPV), System Biology (CosBI) and Drug Discovery (NCL) into the VENUS-C infrastructure

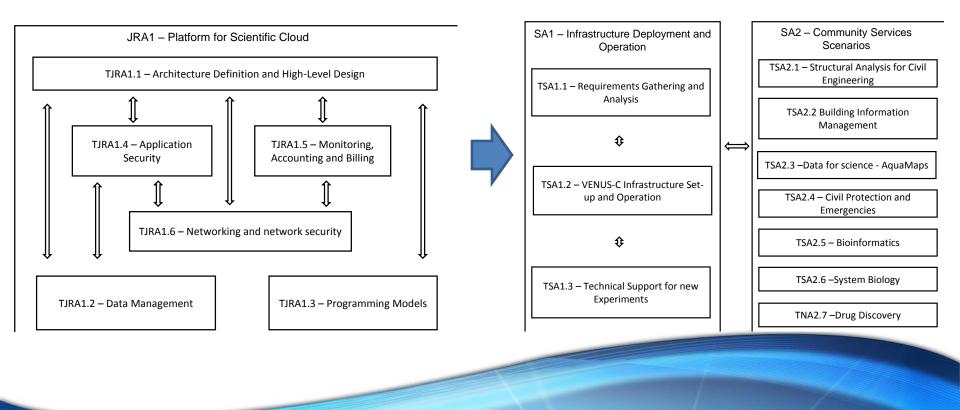
- **Civil Protection and Emergency:** Early fire risk detection (AEG), through an application that will run models on the VENUS-C infrastructure, based on multiple data sources.
- **Civil Engineering:** Support complex computing tasks on Building Information Management for green constructions (provided by COLB) and dynamic building structure analysis (provided by UPV).


D4Science: Integrating computing through VENUS-C on data repositories (CNR). In particular focus will be on Marine Biodiversity through Aquamaps.


Open Call for 20 e-Science Applications

20K€ funding each (in addition to Azure Compute , Storage and Network Resources)

- -> porting applications to the cloud
- -> education and traning
- -> scalability tests


Software + Services to facilitate e-Science Applications in the Cloud

•••• Extensions

Strategy/Approach

Consortium

1 (co)	Engineering Ingegneria Informatica S.p.a.	ENG	IT
2	European Microsoft Innovation Centre	EMIC	DE
3	European Charter of Open Grid Forum	OGF.eeig	UK
4	Barcelona Supercomputing Center – Centro Nacional de Supercomputación	BSC-CNS	ES
5	Universidad Politecnica de Valencia	UPV	ES
6	Kungliga Tekniska Hoegskolan	KTH	SE
7	University of the Aegean	AEG	GR
8	Technion	TECH	IL
9	Centre for Computational and Systems Biology	CoSBi	IT
10	University of Newcastle	NCL	UK
11	Consiglio Nazionale delle Ricerche	CNR	IT
12	Collaboratorio	COLB	IT

